翻訳と辞書
Words near each other
・ Freudenberg, Bavaria
・ Freudenberg, Westphalia
・ Freudenberger
・ Freudenburg
・ Freudenfels Castle
・ Freudenstadt
・ Freudenstadt (district)
・ Freudenstadt Hauptbahnhof
・ Freudenstein
・ Freudenstein Castle
・ Freudental
・ Freudenthal
・ Freudenthal algebra
・ Freudenthal Institute for Science and Mathematics Education
・ Freudenthal magic square
Freudenthal spectral theorem
・ Freudenthal suspension theorem
・ Freudenthal-Preis
・ Freudian Corduroy
・ Freudian slip
・ Freudiana
・ Freudo-Marxism
・ Freudy Cat
・ Freue dich, erlöste Schar, BWV 30
・ Freuet Euch des Lebens
・ Freughlough
・ Freulleville
・ Freund
・ Freund Publishing House
・ Freund's adjuvant


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Freudenthal spectral theorem : ウィキペディア英語版
Freudenthal spectral theorem
In mathematics, the Freudenthal spectral theorem is a result in Riesz space theory proved by Hans Freudenthal in 1936. It roughly states that any element dominated by a positive element in a Riesz space with the principal projection property can in a sense be approximated uniformly by simple functions.
Numerous well-known results may be derived from the Freudenthal spectral theorem. The well-known Radon–Nikodym theorem, the validity of the Poisson formula and the spectral theorem from the theory of normal operators can all be shown to follow as special cases of the Freudenthal spectral theorem.
== Statement ==
Let ''e'' be any positive element in a Riesz space ''E''. A positive element of ''p'' in ''E'' is called a component of ''e'' if p\wedge(e-p)=0. If p_1,p_2,\ldots,p_n are pairwise disjoint components of ''e'', any real linear combination of p_1,p_2,\ldots,p_n is called an ''e''-simple function.
The Freudenthal spectral theorem states: Let ''E'' be any Riesz space with the principal projection property and ''e'' any positive element in ''E''. Then for any element ''f'' in the principal ideal generated by ''e'', there exist sequences \ and \ of ''e''-simple functions, such that \ is monotone increasing and converges ''e''-uniformly to ''f'', and \ is monotone decreasing and converges ''e''-uniformly to ''f''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Freudenthal spectral theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.